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Abstract 

A solar forecast system with a focus on marine layer cloud forecasting in coastal Southern 
California during the summer time was developed. Several configuration of the Weather 
Research and Forecasting (WRF) model are applied to generate a distribution of forecast 
results for Global Horizontal Irradiance (GHI). The forecasts are validated against GHI 
observations form 8 weather stations located along a coastal to inland gradient. 

The direct outputs from all numerical weather prediction models including WRF are 
significantly biased. Postprocessing is required to improve upon simple 24 hours 
persistence forecasts and for the WRF models this improvement is about 30% depending on 
the ground station. The forecast performance is not sensitive to which input data (WRF 
output or past observations of GHI or both) are used. Also including additional WRF outputs 
aside from GHI shows little benefit. The product developed in this research could serve as 
an operational day-ahead marine layer solar forecast system. 
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1 Introduction 
Weather is a continuous, data-intensive, multidimensional, dynamic and chaotic process, 
and these properties make weather forecasting a formidable challenge. There is a wide 
range of techniques involved in weather forecasting from basic approaches to highly 
complex computerized models (Maqsood, 2002). Accurate forecasting of solar irradiance is 
essential for the efficient operation of solar thermal power plants, energy markets, and the 
widespread implementation of solar photovoltaic technology. 

Numerical weather prediction (NWP) is generally the most accurate tool for forecasting 
solar irradiation several hours in advance (Mathiesen et al., 2011). These methods model 
the weather numerically and use time integration to forecast the future state of the weather 
and solar irradiance. Despite computational complexity and intensity, the multitude of 
parameterizations employed and insufficient grid resolution cause the direct output from 
these models to be inaccurate.  

Machine learning techniques, on the other hand, assume that the complex physical 
relationships can be mapped to simpler functional relationships between the key variables 
at much smaller computational cost. One family of methods is the analog method family. It 
hypothesizes that what will happen tomorrow has already happened in the past. 
Considering past observations and forecasts, called the ensemble set, analog forecasts 
predict which date or dates are most similar (“analogous”) to the forecast period. 

Analog methods can be either used for post-processing of a numerical weather model 
output or for forecasting directly from historical measurements. Post-processing is the 
process of taking forecast products of another tool and improving them. 

This report describes a new analog based forecasting algorithm called Taylor Expanded 
Solar Analog Forecasting (TESLA) applied to observations and NWP output from coastal 
California. In southern California, low-altitude marine layer stratocumulus cloud (MLS) 
cover is common during April through September mornings. Generally these clouds are 
optically thick and can reduce solar photovoltaic production by up to 70%.  The primary 
objective is to forecast the burn-off of marine layer clouds. 

2 Post-Processing Methodology 
Our analog method uses past observations and NWP forecasts as input parameters to 
calculate Global Horizontal Irradiance (GHI) forecasts. The past observation and NWP 
forecast set is called the ensemble set. Simply put, TESLA provides a numeric function that 
transforms the ensemble set into a prediction. The input parameters can be the 
observations from 24 hours ago or the predictions of an NWP, or virtually anything that 



may or may not seem relevant to the prediction. TESLA uses the ensemble set to 
"learn/train" how the past inputs are related to the past actual observations and produce 
the function that maps this connection between the inputs and the prediction. This learning 
process automatically filters out irrelevant inputs and adjusts the weights of the relevant 
inputs to produce the function that minimizes the error in the past ensemble set. 

TESLA can also be operated only based on past observations without any NWP input. As an 
example, if we assume that the only input parameter is the observation from 24 hours 
before the forecast valid time, x, then TESLA could produce a function (1.1x – 100), which 
indicates that yesterday's observation should be scaled by 1.1 and 100 subtracted to obtain 
the forecast for tomorrow. The function has to be produced / trained only once based on the 
ensemble set and then can be used for any number of predictions. The forecast calculation is 
then nearly as easy as in the example. 

2.1 Theoretical Background 
TESLA assumes that there is a relationship between some input parameters and future solar 
irradiance that we want to predict. The assumption is that this connection exists as an 
unknown function. 

This function is then written as a Taylor series expansion. The order of truncation of the 
series also determines the order of the forecast (see section 2.2.3). The past ensemble set 
provides the inputs of the function and the exact output of the function is known from past 
observations. The only unknowns are the coefficients of the Taylor expansion. 

The values of the input parameters in the past are combined into a single matrix. Denoting 
this matrix by E, the resulting past observation vector as O and the unknown coefficients as 
c, the relation becomes a simple matrix multiplication of E c= O (Eq. 1). The unknown 
coefficients can then be easily found by using Least Squares Matrix Division that minimizes 
the square of the error efficiently. 

If the order is greater than 1, the higher order values of the input parameters are added to 
E. As an example for order 2, E will contain the ensemble data set values, the square of the 
values and the cross multiplication of all values. This is the reason, why the complexity 
increases exponentially with higher orders. For illustration, an example case with two 
ensemble parameters “x” and “y” in a second order expansion is shown in Equation 1 



Equation 1: Example system of equations in TESLA for order 2. The input variables x, and y are matched 

to the observations O through constants c0 through c5. 

 

In addition, the rank of the matrix E, both depends on the size of the ensemble set as well as 
the number of input parameters. It is easy to accidentally create an under-defined system 
by selecting a high order or high number of input parameters, which will degrade the 
performance significantly. 



2.2 TESLA Configurations 
TESLA has multiple configuration parameters that affect the forecast accuracy, the forecast 
horizon, and the complexity of the training calculation. This section explains the various 
configuration parameters and their effects on the forecast product. A summary of the 
configurations is shown in Table 1. Refer to the following sections for more information. 

Table 1: TESLA Configurations. 

Input 

Variables 

(Section 

2.1.2) 

All GHI GHI GHI GHI GHI Surface 

Temperature 

Columnar 

Cloud Cover 

  Columnar 

Cloud 

Cover 

 Temperature 

at 

850&700hPa 

Surface 

Pressure 

 Surface 

Pressure 

   

The height at 

which 

atmospheric 

pressure 

850&700hPa 

The height 

at which 

atmospher

ic pressure  

700hPa 

    

Prediction 

Function 

Order 

(2.1.3) 

1st 2nd      

# of 

Prediction 

Functions 

per day 

(2.1.3.1) 

1 3 6 12 24 48 96 

 

2.2.1 Training/Ensemble Set Size 
TESLA uses the ensemble database to train its prediction function(s). As the size of this 
ensemble set increases, the prediction quality also increases. Conversely, there also exists a 
minimum ensemble set size that depends on the other configuration parameters, below 



which the quality will drop significantly. For the TESLA configuration applied in this report, 
the minimum training set size was found to be 60 days, on average. 

2.2.2 Number of Input Variables 
TESLA produces a prediction function that can use any number of input variables. As the 
number of relevant input variables increases, the quality of the output also improves. 
However, the required minimum ensemble set size mentioned in the previous section also 
increases, and does so exponentially. It is important to find a balance between the number 
of input variables and the size of the available ensemble training data set.  

The following WRF variables and groups of these variables were selected for training and 
prediction purposes as they are expected to have the greatest influence on observed GHI.  

 All Variables: GHI, Columnar Cloud Cover (total cloud water mixing ratio in a 
vertical column), Surface Pressure, Geopotential Height of the 850 hPa and 700 
hPa pressure levels,  
(Temperature, Relative Humidity, and u & v components of Wind Speed) at the 
surface, 850hPa, and 700hPa pressure levels, Surface Sensible Heat Flux, Latent 
Heat, Precipitation, Planetary Boundary Layer Height, Soil Temperature. 
In addition the Clear Sky Index was calculated based on WRF GHI and the 
Ineichen Clear Sky GHI Model. 

 GHI, Columnar Cloud Cover, Surface Pressure, Height of 850 and 700hPa 
pressure levels 

 GHI and Height of 700hPa pressure level 

 GHI and Surface Pressure 

 GHI and Columnar Cloud Cover 

 GHI Only 

 Surface Temperature, Temperature of 850 and 700hPa pressure levels 

2.2.3 Prediction Function Order 
The TESLA "order" indicates the order of the prediction function polynomial. Increasing the 
order improves the quality of the prediction function, but it also has multiple disadvantages. 
When the order is increased from 1 to 2 (i.e., from x, y, etc. to x, x2, y, y2, xy, etc.), the 
minimum number of required ensembles increases exponentially from about 60 to over 
10,000. If a small training set were provided for training a high order TESLA, the forecast 
accuracy would degrade substantially. Due to restrictions in our training set (11,520 data 



points), we were only able to study orders of 1 and 2. If a large database existed, it would be 
possible to increase the order to improve the forecast. 

Another disadvantage of increasing the order is the increase in computational complexity 
and cost for the training process. However, once the function is established, the prediction 
speed is essentially independent of the order. 

2.2.4 Input of Observations and/or NWP output 
While it is generally expected that the larger the ensemble set the more accurate the 
forecast, it is important to quantify the added value of including the NWP output versus just 
basing the analog method on past observations. For the input parameters we have 
considered three permutations: 

 NWP output of GHI and observed GHI are input to TESLA. 

 No NWP output is used. TESLA forecasts are only based on GHI observations. 

 No temporally resolved input is used. TESLA forecasts reduce to a statistical 
average representation of a daily GHI cycle, i.e. only a bias correction is 
performed. 

Only the GHI output of the NWP (versus the other variables listed in Section 2.2.2) was 
chosen for the first two permutations, because the input parameter comparison results in 
Section 4.4. 

There are several options for including past observations as input parameters to the 
prediction function instead of or in addition to the WRF ensemble set. As an example, if the 
observation from 24 hours ago is used as an input parameter, TESLA will create a function 
that maps the observation from 24 hours ago into a prediction of current GHI. We can then 
use this function with our current observation to predict 24 hours into the future. This lag 
between the observation input and observation output is denoted by D. 

It is possible to increase D beyond 24 hours to predict up to D hours in the future, but, the 
performance will decrease as D increases since current observation become less relevant to 
GHI far in the future. Note that, if an NWP output is used for the ensemble dataset, D must 
be less or equal to the forecast horizon of the ensemble dataset that provides the input 
parameters. If NWP is not used in the ensemble dataset, D is only limited by the number of 
observations available. 

If D is decreased, the maximum forecast horizon will also decrease, but the output 
performance will increase significantly. Unless stated otherwise, D = 1 day to get a 24 hours 
ahead forecast. 



2.2.5 Number of Prediction Functions 
TESLA does not explicitly use the time of day information for its learning process. This 
allows us to create multiple prediction functions by dividing our ensemble database 
strategically. TESLA can use the whole training data set to produce a single prediction 
function that predicts all daylight hours of the day or it can divide the data set into (e.g. 24 
different hour sets and produce one prediction function for each hour of the day 24 
functions total). 

Increasing the number of prediction functions improves the prediction quality as the 
functions can adapt to phenomena that tend to occur only during certain parts of the day. 
However, since the training set is divided into smaller sets, the effective size of the 
ensemble set for each function decreases. As mentioned before, this will decrease the 
forecast accuracy. It is important to find a balance between the number of prediction 
functions and the ensemble data set size. 

3 Observations and Forecast Data 

3.1 Observations 
For validation, we used multiple measurement sites and forecast input parameters. The 
measurement locations and their abbreviations are shown in Table 2 and Figure 1. The sites 
contain complete weather instrumentation including measurements of GHI by a Licor Li200 
photodiode pyranometer. The observational dataset has a temporal resolution of 10 
minutes with an interval-ending time stamp and is available for 5 months (05/01/2013 – 
09/30/2013). Observations with a positive GHI value during night time (12 a.m. to 4 a.m.) is 
assumed to be measurement error, thus removed. 



Table 2: Weather stations with Global Horizontal Irradiance observations. Stations that are not used in 
the present report are marked in italics. 

Abbreviation Latitude Longitude Elevation (ft.) 

CBD 33.14 -117.33 75 

ESC 33.16 -117.03 725 

FTV 33.26 -116.98 1833 

RSF 33.03 -117.19 255 

SPV 33.09 -116.96 430 

HVW 33.07 -116.99 1142 

LLC 33.26 -117.07 997 

SOB 33.01 -117.28 15 

MSD 32.81 -117.24 339 

MTL 32.84 -117.06 916 

RIO 32.84 -116.88 663 

PSW1 33.12 -117.28 125 

PSW3 32.83 -117.13 432 

PSW4  33.14 -117.24 454 

PSW5 32.83 -117.18 322 

PSW6 33.13 -117.20 521 

PSW7 32.84 -116.97 360 

PSW8 32.86 -117.01 453 

 



 

Figure 1: Markers denote the positions of the selected sites listed in Table 1. © Google Earth 

3.2  Numerical weather prediction 
As input parameters we have utilized GHI forecasts of different NWP products: 

 GFS: Global Forecast System. Clear sky index interpolation was applied to 
generate a dataset with 15 min time steps. 

 NAM: North American Mesoscale. Clear sky index interpolation was applied to 
generate a dataset with 15 min time steps. 

 Green Power Labs (GPL) model. This is the probabilistic model developed under 
Task 3.1 of the same CSI contract and is described in more detail in  a separate 
report by GPL1. The version of the probabilistic model applied here was an 

                                                             
1 http://www.calsolarresearch.org/images/stories/documents/Sol3_funded_proj_docs/UCSD/ML-

ProjRpt-CPUC_UCSD_2014-05-30.pdf 



operational version during mid-phase of the project and is different from the 
final version applied in the GPL report (see “New Probabilistic” in the GPL 
report). The GPL report also uses a different geographic area and time period for 
validation and therefore the results are not directly comparable. Nevertheless, 
Fig. 17 in the GPL reports is consistent with Fig. 4 in this report in that the 
probabilistic model is biased towards forecasting clear conditions and has less 
than 10% hit rate in cloudy conditions for most forecast horizons. 

 National Weather Service (NWS) post-processed NAM from the National Digital 
Forecast Database (NDFD) 

 24 hour persistence forecast 

 UCSD post-processed Weather Research and Forecasting (WRF) model. Five 
different WRF model configurations were run. (see Section 3.2.1) 

3.2.1 WRF: Weather Research and Forecasting 
The WRF model is a state-of-the-art NWP and atmospheric simulation system that is 
maintained and supported as a community model (Skamarock et al., 2008). In this work, the 
version WRF V3.5 was used and configured with two nests of horizontal resolutions of 12.5 
km and 2.5 km (Figure 2). To capture the characteristics of the shallow marine boundary 
layer, 75 terrain-following levels were used with 50 levels below 3000 m. The NAM, 
initialized at 12 UTC was used to derive boundary conditions for the outer domain. The 
NAM is run by the National Centers for Environmental Prediction (NCEP) and is based on 
WRF-NMM using 12 km horizontal resolution, 1-hour temporal resolution, and 60 vertical 
hybrid sigma-level coordinate. The WRF simulations were initialized at 0 UTC and run for 
36 hours with 12 hours as spin-up time. The base WRF configuration, denoted as Base WRF 
(WRF without cloud data assimilation), is summarized in Table 3. 



 

Figure 2: WRF simulation domains showing a nesting from a large domain with a spacing of Δx = 12.5 km 
to a small domain with a spacing of 2.5 km. 

Table 3: Summary of WRF Configuration. For details please refer to the WRF user guide. 

Domain/Time Options   Physics Options (WRF Option #) 

Δx (km) 2.5 Cumulus NSAS (14) 

Vertical Pts. 75 Radiation New Goddard (5) 

Output Interval (min) 15 Microphysics Morrison (10) 

Spin-Up (hr) 12 PBL MYNN (5) 

Initial & boundary conditions 12 UTC NAM LSM RUC (3) 

 

Due to the difficulty of simulating marine layer stratocumulus, one configuration of WRF 
physics options is not able to consistently produce accurate forecast. Therefore, ensemble 
forecasts are created by running multiple forecasts, each with a unique variation in the 
configuration to represent the different sources of uncertainty. López-Coto et al., (2014) 
demonstrated that the cumulus scheme is the most important parameterization generating 
variability in simulating marine stratocumulus in coastal southern California. The second 
important parameterization is the radiation scheme. In addition, when the NSAS cumulus 
scheme was used, the microphysics option had a strong influence.  

In addition to the model physics, the initial conditions were also varied. Mathiesen et al., 
(2013) developed the WRF-Cloud Data Assimilation (CLDDA) using Geostationary 
Operational Environmental Satellite (GOES) imagery to directly assimilate clouds in the 



initial conditions. Validated using the UCSD pyranometer network, the WRF-CLDDA was 
shown to be 17.4% less biased than the NAM. 

Therefore, in addition to the base case listed in Table 3 , four WRF simulations were 
conducted using three cumulus, two radiation and two microphysics schemes. Table 4 
showing the unique variations of each scheme relative to the base case. 

The WRF ensemble datasets all have a temporal resolution of 15 minutes and are available 
for the same 5 months time frame as the observational dataset. Both datasets have a small 
number of missing data points due to problems in measurements and forecast simulation. 
In order to achieve a consistent data set of observations and WRF ensembles, all missing 
data points for a location have been removed from both WRF ensembles and observations. 
To temporally align observations and WRF forecasts, the station observations at :10 and :20 
are averaged to match the :15 forecast data point and a similar procedure is used for the :45 
data point. The :00 and :30 observations are already consistent with the WRF output times.  
These matching daytime datasets are then used for training and validation. 

Table 4: Summary of unique configurations for four different WRF ensembles 

Ensemble Name Cumulus Radiation Microphysics 

Cumulus1 Kain-Fritsch (1) Dudhia (1) / RRTM (1)  

Microphysics8   Thompson (8) (8) 

CLDDA    

CLDDA& Cumulus 3 Grell-Freitas (GF) (3)   

3.3 Raw Forecast Performance 
The results of the raw (no postprocessing) forecast model output for the May – September 
marine layer forecast trials were compiled in Figure 3, Error! Reference source not 
found., and Error! Reference source not found.. The NOAA models (NAM and GFS) have 
severe deficiencies in forecasting marine layer cloud cover; for the coastal CBD site in Fig. 3 
all forecasts are clear. The National Weather Service (NDFD) post-processing correctly 
predicts morning clouds, but misses days that are completely overcast. The performance of 
the GPL model is the worst of any of the custom models with a hit rate on par with NAM and 
GFS. Persistence forecast and UCSD WRF configurations that include cloud data assimilation 
from satellite images (wrfcldda) perform best. In the San Diego summer climate, the 
absence of frontal passage causes significant ‘inertia’ in the weather conditions. Weather 
conditions change typically over time periods of 2-5 days and therefore a 24-hour 
persistence forecast is very accurate and difficult to beat. 



 

Figure 3: Forecast intercomparison between different solar forecast models relative to Global Horizontal 
Irradiation (GHI) measurements at Carlsbad, CA from August 8-25, 2013. Each column represents one 
day. Green color indicates a correct forecast. Blue color indicates a clear forecast that was actually 
cloudy, and red color indicates a cloudy forecast that was actually clear. 



 

Figure 4: Hit score = 0.5 (Cloudy hit [%] + Clear hit [%]) for the forecast models averaged over CBD,.ESC, 

PWS1, PWS4, PWS5, PWS7 and PWS8 sites. The results at other stations are qualitatively similar. 



 

Figure 5: Daytime mean absolute error for the different weather forecast models. 

3.4 Division of Dataset into Training and Verification 
The dataset was divided into the training part and the verification/testing part. The training 
set size is maximized by using the entire dataset with the exception of the timeframe of 5 
days after the forecast day. While using future data for training is unrealistic, this procedure 
results in a consistent number of training days for each forecast day. Removing the 5 
immediately following days ensures that days that may be directly related to the forecast 
day are not used in the training. 

The training dataset is used to obtain the forecast function for the selected day. Then, the 
WRF forecast variables for the selected day and station observations of the previous day are 
used to obtain the TESLA prediction, which is validated against the observation of the 
selected day. This procedure is repeated for all days within the dataset to obtain the overall 
performance that will be shown in the figures in Section 4. 

3.5 Error metrics 
Errors are computed for all 24 hours of the day. The main error metrics used within this 
report are Mean Absolute Error (MAE), Mean Bias Error (MBE) and Root Mean Square Error 
(RMSE) to quantify and compare the performance. Furthermore, another metric called 



forecast skill was used to quantify the relative performance between two forecasts models. 
MAE is obtained by averaging the absolute value of the error, to give a measure of the 
accuracy of the predictions 

 

MBE is obtained by taking the straight average of the error values to give an idea if the 
prediction tends to be systematically higher or lower than the observation, 

 

RMSE is obtained by taking the average of the square of error values and taking the square 
root, 

 

Forecast Skill measures the performance of TESLA with respect to the performance of the 
raw NWP (see Table 7 later) or with respect to the 24 hour persistence model (see Fig. 14 
later). If there is no improvement, the forecast skill is 0. In the extreme case of no TESLA 
error, the forecast skill becomes 1. 

 

4 Post-processed forecast performance 

4.1  Forecast Bias 
A good post processing method is expected to remove bias and recover the average diurnal 
signal of GHI.  Therefore as a first validation, the predictions are averaged over each hour of 
all days, providing an average diurnal cycle forecast for the CBD and ESC sites (Fig. 6). The 
coastal site (CBD) shows a typical marine layer signal with smaller irradiances in the 
morning.  Figure 6 confirms that TESLA is essentially unbiased while the raw NWP forecast 
products are mostly positively biased and fail to produce morning clouds. Although all 
TESLA configurations perform similarly, only TESLA Order 2 results using NWP GHI is 
shown in the figures. 



 

 

Figure 6: Average diurnal cycle for different forecasts over the May – September forecast period. The 
dashed lines show the ‘raw’ GHI forecast products of different Numerical Weather Prediction tools 
without post-processing. The solid lines show the TESLA Order 2 predictions using the GHI output of the 
forecast products. The circles show the observations. A) Coastal station CBD. (B) Inland station ESC. 

The MBE and MAE results of the diurnal cycle figures are summarized in Table 5 and Table 
6. 



Table 5: Error Statistics for the CBD Coastal Station in W m-2. 

 CLDDA&
Cumulus

3 

CLDDA Microphy
sics8 

Cumulus Base WRF  NAM GFS 

MAE 
Tesla 

1.53 0.79 1.59 0.82 1.11 0.90 0.95 

MAE 
Raw 

54.00 85.70 24.40 89.23 82.43 58.25 61.32 

MBE 
Tesla 

-1.52 -0.60 -1.59 -0.58 -0.97 -0.85 -0.89 

MBE 
Raw 

53.90 85.58 23.30 88.60 82.30 57.44 58.57 

 

Table 6: Error Statistics for the ESC Inland Station in W m-2. 

 CLDDA
&Cumul

us3 

CLDDA Microphys
ics8 

Cumulus Base WRF NAM GFS 

MAE 
Tesla 

0.92 0.78 0.59 1.36 0.54 0.48 0.56 

MAE 
Raw 

66.11 65.77 31.72 47.05 45.46 31.7 16.84 

 

4.2  Forecast RMSE: Choice of TESLA Configuration 
TESLA forecast results for 120 days were analyzed to calculate error metrics and compare 
those to the RMSE of 24-hour persistence forecast. This section considers a separate 
function per every 15-minute interval resulting in 96 different functions. Nighttime 
prediction functions could be eliminated to reduce the computational cost, but are included 
within the error metrics. 



First an optimal configuration of TESLA is analyzed in order to find the best order of the 
TESLA function and number of daily functions to include. In the following the TESLA input 
variables are varied. The forecast results are demonstrated only for the Carlsbad (CBD) 
station, but similar trends are observed at other stations. Two different TESLA methods are 
used: 

 TESLA Order 1 applied to the ensemble set with past observations and NWP GHI 

 TESLA Order 2 applied to the ensemble set with past observations and NWP GHI 

Figure 7shows that the Order of the TESLA method has little impact on forecast error.  

Furthermore, the number of prediction functions is varied as 

 Creating a prediction function for each 15-minute interval of the day, resulting in 
96 functions total. 

 30-minute intervals, resulting in 48 functions. 

 1-hour intervals, 24 functions. 

 2-hour intervals, 12 functions. 

 4-hour intervals, 6 functions. 

 8-hour intervals, 3 functions. 

 24-hour intervals, a single function. 

Figure 7shows that the error decreases the finer the dataset is sliced into shorter time 
periods to generate the prediction functions. However, there is virtually no difference 
between 15 minute to 2 hour intervals. As intervals become shorter, the weather conditions 
at each time of day only vary slightly. A performance increase from more specificity may be 
offset by a reduction in the size of the training set. 



 

Figure 7: Effect of TESLA order and number of prediction functions on forecast accuracy. Creating more 
specialized prediction functions (one function every 15 minutes) decreases the error of the prediction.  

For the remainder of this section only the following TESLA configuration of Order 2 with 15 
minute prediction functions is used. 

4.3 Sensitivity to type of input variables 
In this section the forecast performance is examined for the scenarios described in Section 
2.2.4. TESLA is applied (i) using no input (i.e. only a bias correction is performed), (ii) using 
NWP GHI only, (iii) past observations only, and (iv) using observations and NWP GHI as 
inputs. Table 7 shows the overall forecast skill and Figure 8,Figure 9,Figure 10 and Figure 
11 show detailed results by station and WRF ensemble.  

The forecast results are not strongly sensitive to the type of input variables. As expected, a 
bias correction (no input) performs worst and providing NWP and observation data results 
in the best forecast performance. However, the relatively persistent weather conditions in 
coastal California in the summer cause simple bias corrections to be quite effective. This 
performance difference may not be enough compared to the effort and time required to 
generate the WRF forecasts. 



Table 7: Overall forecast results as a function of different input parameters and TESLA configurations. 

The forecast skill is measured with respect to the raw NWP forecast for various cases. A larger forecast 

skill is better. 

 Overall Forecast Skill [1-RMSE(TESLA)/RMSE(NWP)] 

Input Type None NWP GHI Only Past Observations 

Only 

NWP GHI and Past 

Observations 

TESLA Order 2 

Func./15 Minute 

0.44 0.47 0.48 0.48 

TESLA Order 1 

Func./15 Minute 

0.44 0.45 0.47 0.48 

Input Parameters 

(See Figure 12) 

[1] [2] [3] [4] [5] [6] [7] 

TESLA Order 2 

Func./15 Minute 

-12.36 -0.86 0.36 0.37 0.03 0.38 0.34 

TESLA Order 1 

Func./15 Minute 

0.00 0.36 0.36 0.37 0.35 0.36 0.36 

TESLA Order 2 

Func./1 Day 

-2.03 0.18 0.22 0.21 0.21 0.23 0.20 

TESLA Order 1 

Func./1 Day 

0.32 0.34 0.33 0.34 0.33 0.33 0.32 

  

 



 

Figure 8: Marine layer solar forecast RMSE results with TESLA Order 2 without any input parameters. 
The prediction functions simply become constant values that correct the overall bias in the forecast.  

 

 

Figure 9: Marine layer solar forecast RMSE results with TESLA Order 2 using different NWP GHI outputs 
as input parameters, as shown in the legend.  



 

 

Figure 10: Marine layer solar forecast RMSE results with TESLA Order 2 using different NWP GHI outputs 
and past observations as input parameters. 

 

Figure 11: Marine layer solar forecast RMSE results with TESLA Order 2 using only past observations as 
input parameters. 



4.4 Sensitivity to NWP input variables 
In this section, we compared the effect of using different input parameters from NWP on the 
prediction quality. The WRF generated parameters given in Section 2.2.2 are used as 
prediction function inputs. Timeseries of all WRF generated inputs for a single example day 
are shown in the Appendix. For this analysis the base WRF configuration is used and TESLA 
output is compared against measurements at CBD. 

 

Figure 12: Marine layer solar forecast RMSE results with TESLA Orders 1 and 2 using different WRF 

output variables and past observations as input: [1] – All variables, [2] – GHI, Columnar Cloud Cover, 

Surface Pressure, Height 850 & 700, [3] – GHI and Height 700, [4] – GHI and Surface Pressure, [5] – GHI 

and Columnar Cloud Cover, [6] – GHI Only, [7] –Temperature at Surface, 850 & 700 mbar. 

We can see that when all WRF variables are used to train the TESLA prediction function, 
large errors result, since the training dataset size requirement increases exponentially with 
increasing number of parameters. From the rest of the variable combinations, we conclude 
that a single WRF output - GHI – results in the smallest error for TESLA second order. Using 
a single variable is also the simplest to implement operationally. 



4.5 Best TESLA Performance by Site 
If the best result for every site is selected over all possible input parameters and forecast 
tools, the results in Fig. 12 are obtained. The improvement over 24 hour persistence ranges 
from 23% to 39%. 

 

 

 



Figure 13: Best TESLA results for every site, selected over all possible input parameters and forecast 
tools shown in Figs. 7 through 10. a) RMSE. b) Forecast skill with respect to a 24 hour persistence 
forecast by the best performing TESLA implementation.  

5 Conclusions 
A solar forecast system with a focus on marine layer cloud forecasting in coastal Southern 
California during the summer time was developed. Several configuration of the Weather 
Research and Forecasting (WRF) model are applied to generate a distribution of forecast 
results for Global Horizontal Irradiance (GHI). The forecasts are validated against GHI 
observations form 8 weather stations located along a coastal to inland gradient. 

The direct outputs from any numerical weather prediction model including WRF are 
significantly biased. Postprocessing is required to improve upon simple 24 hours 
persistence forecasts and for the WRF models this improvement is about 30% depending on 
the ground station. A postprocessing implementation that derives a different prediction 
function every 15 minutes and uses a second order algorithm delivers the best 
performance. The forecast performance is not sensitive to which input data (WRF output or 
past observations of GHI or both) are used. Also including additional WRF outputs aside 
from GHI shows little benefit.  

The resulting forecast model is relatively easy to implement. Generating WRF forecasts is 
computationally expensive, but the postprocessing can be conducted quickly on a personal 
computer. 

In the future, the forecasts will be implemented operationally on SDG&E computers. 
System-wide fleet and local feeder forecasts will present an opportunity for improved local 
voltage control and managing system-wide ancillary services to reduce operating costs and 
facilitate solar power integration.
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Appendix A. Example NWP Input Timeseries 
The following graphs show sample plots for the NWP inputs used in Section 4.4 for the 
example day of 05/01/12. 

 

 



 

 


